UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2011 question paper for the guidance of teachers

0620 CHEMISTRY

0620/31

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2		Mark Scheme: Teachers' version Syllabus		Paper
			IGCSE – May/June 2011	0620	31
1	(a)	F or	B diffusion / <u>fractional</u> distillation		[1]
	(b)	Α	simple distillation		[1]
	(c)	D	chromatography		[1]
	(d)	E	filtration		[1]
	(e)	С	evaporation		[1]
	(f)	В	<u>fractional</u> distillation		[1]
2	(a)	.,	photosynthesis or a photochemical reaction not an example, question requires a process not devices which convert light into electricity		[1]
		` ,	cell accept battery not generator		[1]
	(b)	(i)	correct formula		[1]
			cond following marks conditional on correct formula If covalent mark 1 only correct charges 6x and 2o around anion do NOT penalise for incorrect coding ignore electrons around potassium		[1] [1]
		(ii)	correct formula		[1]
			If ionic mark 1 only cond 2 bp and 2 nbp around selenium 1 bp and 3 nbp around both chlorine atoms		[1] [1]
			the ionic compound higher melting point / boiling point / less volatile conducts when molten or aqueous, covalent compound do is soluble in water, covalent is not / ionic insoluble in org in organic solvents harder any two note there has to be comparison between the ionic compound not density	anic solvents,	[2]

	Page 3			Mark Scheme: Teachers' version	Syllabus	Paper
				IGCSE – May/June 2011	0620	31
	(c)	base				[1]
			alkal epts a	i a proton		[2]
		acc	[-]			
		pro	ton ar	nd H ⁺ [2]		
•	(-)		. .	max 4		
3	(a)	car		[1]		
				gas it escapes / blown out / diffuses rms silicon(IV) oxide / silica		[1] [1]
		/ sil	icon(1	IV) oxide present in impure iron		ניז
			•	 oxide reacts with calcium oxide to form slag or cannot oved from surface 	alcium silicate	[1] [1]
		acc	ept s	kimmed, syphoned, poured off		
			tapp	ed correct formula or equations		max [4]
				um oxide reacts with silicon		
	(b)	(i)	•	sensible suggestion – harder/stronger/can be t stant to corrosion	tailored for a spe	ecific use/more [1]
				steel does not rust		[-]
		(ii)	i) mild steel – cars or any vehicle/bicycles/white goods/screws or nails/roof/bridges			of/bridges/tools/
			build	dings/ships/pipes/machinery etc.		[1]
				nless steel – chemical plants/cooking utensils/jew	ellery/cutlery/surgi	
			KILCI	nen sinks/pipes/etc.		[1]
	(c)	(i) strong attractive forces / strong bonds / bonds hard to break / require			s a lot of	
	` ,	energy to break bonds			[1]	
		not between ions, not between positive and negative ions,not between electrons		ons,		
			betw	veen positive ions and (negative) electrons / opposi	te charges attract	[1]
		(ii)	hecs	ause the <u>layers, lattice or rows</u> of <u>ions/cations</u>	-	[1]
		('')	acce	ept sheets of ions		ניו
			not	atoms / molecules / protons / nuclei		
			can	move / slip / slide past each other		[1]
4	(a)	(i)		S + $3O_2 \rightarrow 2ZnO + 2SO_2$ palanced only [1]		[2]
		/::\			-in a /a a ula a us us a us	:da 101
		(ii)		reagents from named metal(s) more reactive than a hydrogen	zinc/carbon monox	ide [2]
		(iii)		have different boiling points		[1]
	'	(''' <i>)</i>		nium will distil first then zinc leaving lead/lead distill	ed last	[1]

	Page 4		Mark Scheme: Teachers' version	Syllabus	Paper
			IGCSE – May/June 2011	0620	31
	the	n rate	n yield need low temperature would be too slow or uneconomic sion of optimum temperature could score mark 1 an	d 2	[1] [1]
	doe	es not	e of catalyst would increase rate (at same temperate alter the yield (at that temperature) nic rate at lower temperature, therefore higher yield	ure)	[1] [1]
	_	•	essure which would increase yield / rate n enough / high pressure expensive		[1] [1] max [4]
		-	everse arguments rease yield ≡ position of equilibrium to right		
5	(a) (i)	2Li ·	+ 2HI \rightarrow 2LiI + H ₂		[1]
	(ii)	zinc	carbonate + hydriodic acid → zinc iodide + carbor	n dioxide + water	[1]
	(iii)	MgO	$0 + 2HI \rightarrow MgI_2 + H_2O$		[1]
	` '		1 is redox / Li/2HI reaction son either oxidation number/state / electron transfe	er	[1] [1]
	(c) with	h hydr	iodic acid – iodine formed / goes <u>dark brown</u> / grey	/black solid	[1]
	not purp		le vapour not purple/black solution		
		with hydrobromic acid – bromine formed / goes orange / yellow / brown / red / brown vapour			dish brown / red [1]
	not	note can accept brown for iodine provided bromine is different orange/brown		etc.	
	(d) (i)		eaction is exothermic / reaction produces heat/energe sodium hydroxide used up/neutralised / reaction		[1] [1]
	(ii)		ng colder acid / no more heat produced t given in (d)(i) any comments such as "reaction ha	s stopped" can ga	[1] in mark
	(iii)	not for a	/ 1.3 / 1.3333 (mol/dm 3) scores both marks 1.34 correct method – M_1 V_1 / moles of NaOH = 0.02 an incorrect answer only [1]		[2]

Paper

[1]

Syllabus

		IGCSE – May/June 2011	0620	31	
6 (a)			•		
	(ii)	glucose / sugar changed to alcohol / ethanol accept an unbalanced equation (catalysed by) enzymes / yeast		[2] [1]	
(b)	butanoic acid CH ₃ -CH ₂ -CH ₂ -COOH hydrogen atoms omitted from ends of bonds, penalise once		nce	[1] [1]	
(c)	(i)	ester		[1]	
	(ii)	$C_6H_{12}O_2$ ignore $CH_3COOC_4H_9$		[1]	
((iii)	correct structural formula of butyl ethanoate showin	g all bonds	[2]	
(a)				[1] [1]	
	metal B is aluminium cond faster reaction after removal of oxide layer / it would give more reactive than zinc			[1] ogen / aluminium [1]	
	metal C is zinc zinc least reactive NOTE MAX [5] If you encounter different reasoning which is correct, please award the approp			[1] [1] priate marks.	
(b)	for	magnesium and zinc same <u>volume</u> of hydrogen		[1]	
	because both have valency of 2 / 1 mole of metal gives 1 mole of hydrogen / 1 mole or reacts with 2 moles of acid			/ 1 mole of metal [1]	
	(b) (c)	(b) buta CH3 hyd (c) (i) (iii) (iii) (a) met con met con mor met zince NO If you become to the contact of th	 (a) (i) cracking / heat with catalyst to make butane butene reacts with steam/water / hydrated accept heat and catalyst for cracking but if aluminosilicates / silica / aluminium oxide/aluminichromium oxide (ii) glucose / sugar changed to alcohol / ethanol accept an unbalanced equation (catalysed by) enzymes / yeast (b) butanoic acid CH₃-CH₂-CH₂-COOH hydrogen atoms omitted from ends of bonds, penalise of continuous conditions of the conditions of the continuous conditions of the continuous conditions of the condit	 (a) (i) cracking / heat with catalyst to make butane butene reacts with steam/water / hydrated accept heat and catalyst for cracking but if specified: 450 to 8 aluminosilicates / silica / aluminium oxide/alumina / china / broken performium oxide (ii) glucose / sugar changed to alcohol / ethanol accept an unbalanced equation (catalysed by) enzymes / yeast (b) butanoic acid CH₃-CH₂-COOH hydrogen atoms omitted from ends of bonds, penalise once (c) (i) ester (ii) C₆H₁₂O₂ ignore CH₃COOC₄H₉ (iii) correct structural formula of butyl ethanoate showing all bonds (a) metal A is magnesium cond most reactive or fastest reaction metal B is aluminium cond faster reaction after removal of oxide layer / it would give more hydromore reactive than zinc metal C is zinc zinc least reactive NOTE MAX [5] If you encounter different reasoning which is correct, please award the approbecause both have valency of 2 / 1 mole of metal gives 1 mole of hydrogen because both have valency of 2 / 1 mole of metal gives 1 mole of hydrogen 	

Mark Scheme: Teachers' version

If you encounter different reasoning which is correct, please award the appropriate marks.

bigger volume for aluminium because its valency is 3 / 1 mole of metal gives 1.5 moles of

accept balanced equations
accept ionic charges as alternative to valency

hydrogen / 1 mole of metal reacts with 3 moles of acid

[Total: 80]

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – May/June 2011	0620	31

8

•	(a)	addition – polymer only product / only one product accept monomer has C=C accept monomer and polymer have same empirical formula accept no loss of material in polymerisation not only one monomer	[1]
		condensation – polymer and water / small molecule formed	[1]
	(b)	-CH ₂ – CC <i>l</i> ₂ - repeat unit correct COND continuation	[1] [1]
	(c)	CH ₂ =CHOOCCH ₃	[1]
	(d)	-OC(CH ₂) ₄ CONH(CH ₂) ₆ NH- COND amide correct linkage correct repeat units continuation not NH ₂ or COOH endings	[1] [1] [1]